Skip to main content

Random Access Memory

Random Access Memory (RAM) is a type of computer data storage. Its mainly used as main memory of a computer. RAM allows to access the data in any order, i.e random. The word random thus refers to the fact that any piece of data can be returned in a constant time, regardless of its physical location and whether or not it is related to the previous piece of data. You can access any memory cell directly if you know the row and column that intersect at that cell.
    Most of the RAM chips are volatile types of memory, where the information is lost after the power is switched off. There are some non-volatile types such as, ROM, NOR-Flash.

SRAM: Static Random Access Memory
SRAM is static, which doesn't need to be periodically refreshed, as SRAM uses bistable latching circuitry to store each bit. SRAM is volatile memory. Each bit in an SRAM is stored on four transistors that form two cross-coupled inverters. This storage cell has two stable states which are used to denote 0 and 1. Two additional access transistors serve to control the access to a storage cell during read and write operations. A typical SRAM uses six MOSFETs to store each memory bit.
    As SRAM doesnt need to be refreshed, it is faster than other types, but as each cell uses at least 6 transistors it is also very expensive. So in general SRAM is used for faster access memory units of a CPU.

DRAM: Dynamic Random Access Memory
In a DRAM, a transistor and a capacitor are paired to create a memory cell, which represents a single bit of data. The capacitor holds the bit of information. The transistor acts as a switch that lets the control circuitry on the memory chip read the capacitor or change its state. As capacitors leak charge, the information eventually fades unless the capacitor charge is refreshed periodically. Because of this refresh process, it is a dynamic memory.
    The advantage of DRAM is its structure simplicity. As it requires only one transistor and one capacitor per one bit, high density can be achieved. Hence DRAM is cheaper and slower, when compared to SRAM.

Other types of RAM

FPM DRAM: Fast page mode dynamic random access memory was the original form of DRAM. It waits through the entire process of locating a bit of data by column and row and then reading the bit before it starts on the next bit.

EDO DRAM: Extended data-out dynamic random access memory does not wait for all of the processing of the first bit before continuing to the next one. As soon as the address of the first bit is located, EDO DRAM begins looking for the next bit. It is about five percent faster than FPM.

SDRAM: Synchronous dynamic random access memory takes advantage of the burst mode concept to greatly improve performance. It does this by staying on the row containing the requested bit and moving rapidly through the columns, reading each bit as it goes. The idea is that most of the time the data needed by the CPU will be in sequence. SDRAM is about five percent faster than EDO RAM and is the most common form in desktops today.

DDR SDRAM: Double data rate synchronous dynamic RAM is just like SDRAM except that is has higher bandwidth, meaning greater speed.

DDR2 SDRAM: Double data rate two synchronous dynamic RAM. Its primary benefit is the ability to operate the external data bus twice as fast as DDR SDRAM. This is achieved by improved bus signaling, and by operating the memory cells at half the clock rate (one quarter of the data transfer rate), rather than at the clock rate as in the original DDR SRAM.

Comments

Popular posts from this blog

Digital Design Interview Questions - All in 1

1. How do you convert a XOR gate into a buffer and a inverter (Use only one XOR gate for each)? Answer 2. Implement an 2-input AND gate using a 2x1 mux. Answer 3. What is a multiplexer? Answer A multiplexer is a combinational circuit which selects one of many input signals and directs to the only output. 4. What is a ring counter? Answer A ring counter is a type of counter composed of a circular shift register. The output of the last shift register is fed to the input of the first register. For example, in a 4-register counter, with initial register values of 1100, the repeating pattern is: 1100, 0110, 0011, 1001, 1100, so on. 5. Compare and Contrast Synchronous and Asynchronous reset. Answer Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be that significant. The clock works as a filter for sma...

XMR: Cross Module Reference

Cross Module Reference   Cross Module Reference abbreviated as XMR is a very useful concept in Verilog HDL (as well as system Verilog). However it seems to be less known among many users of Verilog. XMR is a mechanism built into Verilog to globally reference (i.e., across the modules) to any nets, tasks, functions etc. Using XMR, one can refer to any object of a module in any other module, irrespective of whether they are present below or above its hierarchy. Hence, a XMR can be a:   Downward reference OR Upward reference   Consider the following hierarchy:     Module A   Net x   Instance P of Module B     Net x   Instance M of Module D   Net x   Instance Q of Module C   Net x   Instance N of Module E    Net x   Instance R of Module B   Net x   Instance M of Module D   Net x ...

One-hot Encoding

Designing a FSM is the most common and challenging task for every digital logic designer. One of the key factors for optimizing a FSM design is the choice of state coding, which influences the complexity of the logic functions, the hardware costs of the circuits, timing issues, power usage, etc. There are several options like binary encoding, gray encoding, one-hot encoding, etc. The choice of the designer depends on the factors like technology, design specifications, etc. One-hot encoding In one-hot encoding only one bit of the state vector is asserted for any given state. All other state bits are zero. Thus if there are n states then n state flip-flops are required. As only one bit remains logic high and rest are logic low, it is called as One-hot encoding. Example : If there is a FSM, which has 5 states. Then 5 flip-flops are required to implement the FSM using one-hot encoding. The states will have the following values: S0 - 10000 S1 - 01000 S2 - 00100 S3 - 00010 S4 - 00001 Adv...