Skip to main content

Type-1: Design a ...

Most Common Interview Questions: Type-1: Design a ...

This is the most common question one will face in his/her interview, probably the first question which starts testing your knowledge. (I mean this comes after introduction and "Tell us about yourself"). This is a lethal weapon used by the interviewer to test one's abilities: both weak and strong points. The concepts required for solving the problem are generally related to the type of job you are being tested for.

The most popular strategy used by the interview in this question is gradual increase in the complexity of the question. It goes like this ... Interviewer states the specifications of the design. You can present as simple/straight forward/redundant answer as possible. The next question could be redesign using only NOR gates or NAND gates. Followed by "what are minimum number of NAND gates required for this particular design" and it goes on.

Sometimes it starts with designing a small block. Then you will be asked to embed this module in a bigger picture and analyze the scenario. Where most likely you will face questions like "can the design (you made) be optimized for better performance of the entire module?" or "what drawbacks you see in your design when embedded in the bigger module". Basically tests how good you are with designs with a hierarchy.

Another way is step by step removal of assumptions that make the design complex as we go further.

Tips
  • Read the job description, think of possible questions or target areas, and prepare for the same.
  • ASIC interviews (especially freshers) expect a question dealing timing analysis, synthesis related issues, etc.

Comments

Popular posts from this blog

Digital Design Interview Questions - All in 1

1. How do you convert a XOR gate into a buffer and a inverter (Use only one XOR gate for each)? Answer 2. Implement an 2-input AND gate using a 2x1 mux. Answer 3. What is a multiplexer? Answer A multiplexer is a combinational circuit which selects one of many input signals and directs to the only output. 4. What is a ring counter? Answer A ring counter is a type of counter composed of a circular shift register. The output of the last shift register is fed to the input of the first register. For example, in a 4-register counter, with initial register values of 1100, the repeating pattern is: 1100, 0110, 0011, 1001, 1100, so on. 5. Compare and Contrast Synchronous and Asynchronous reset. Answer Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be that significant. The clock works as a filter for sma...

XMR: Cross Module Reference

Cross Module Reference   Cross Module Reference abbreviated as XMR is a very useful concept in Verilog HDL (as well as system Verilog). However it seems to be less known among many users of Verilog. XMR is a mechanism built into Verilog to globally reference (i.e., across the modules) to any nets, tasks, functions etc. Using XMR, one can refer to any object of a module in any other module, irrespective of whether they are present below or above its hierarchy. Hence, a XMR can be a:   Downward reference OR Upward reference   Consider the following hierarchy:     Module A   Net x   Instance P of Module B     Net x   Instance M of Module D   Net x   Instance Q of Module C   Net x   Instance N of Module E    Net x   Instance R of Module B   Net x   Instance M of Module D   Net x ...

One-hot Encoding

Designing a FSM is the most common and challenging task for every digital logic designer. One of the key factors for optimizing a FSM design is the choice of state coding, which influences the complexity of the logic functions, the hardware costs of the circuits, timing issues, power usage, etc. There are several options like binary encoding, gray encoding, one-hot encoding, etc. The choice of the designer depends on the factors like technology, design specifications, etc. One-hot encoding In one-hot encoding only one bit of the state vector is asserted for any given state. All other state bits are zero. Thus if there are n states then n state flip-flops are required. As only one bit remains logic high and rest are logic low, it is called as One-hot encoding. Example : If there is a FSM, which has 5 states. Then 5 flip-flops are required to implement the FSM using one-hot encoding. The states will have the following values: S0 - 10000 S1 - 01000 S2 - 00100 S3 - 00010 S4 - 00001 Adv...