A complex programmable logic device (CPLD) is a semiconductor device containing programmable blocks called macro cell, which contains logic implementing disjunctive normal form expressions and more specialized logic operations. CPLD has complexity between that of PALs and FPGAs. It can has up to about 10,000 gates. CPLDs offer very predictable timing characteristics and are therefore ideal for critical control applications.
Applications
A CPLD contains a bunch of programmable functional blocks (FB) whose inputs and outputs are connected together by a global interconnection matrix. The global interconnection matrix is reconfigurable, so that we can change the connections between the FBs. There will be some I/O blocks which allow us to connect CPLD to external world. The block diagram of architecture of CPLD is shown below.
The programmable functional block typically looks like the one shown below. There will be an array of AND gates which can be programed. The OR gates are fixed. But each manufacturer has their way of building the functional block. A registered output can be obtained by manipulating the feedback signals obtained from the OR ouputs.
CPLD Programming
The design is first coded in HDL (Verilog or VHDL), once the code is validated (simulated and synthesized). During synthesis the target device(CPLD model) is selected, and a technology-mapped net list is generated. The net list can then be fitted to the actual CPLD architecture using a process called place-and-route, usually performed by the CPLD company's proprietary place-and-route software. Then the user will do some verification processes. If every thing is fine, he will use the CPLD, else he will reconfigure it.
Applications
- CPLDs are ideal for critical, high-performance control applications.
- CPLD can be used for digital designs which perform boot loader functions.
- CPLD is used to load configuration data for an FPGA from non-volatile memory.
- CPLD are generally used for small designs, for example, they are used in simple applications such as address decoding.
- CPLDs are often used in cost-sensitive, battery-operated portable applications, because of its small size and low-power usage.
A CPLD contains a bunch of programmable functional blocks (FB) whose inputs and outputs are connected together by a global interconnection matrix. The global interconnection matrix is reconfigurable, so that we can change the connections between the FBs. There will be some I/O blocks which allow us to connect CPLD to external world. The block diagram of architecture of CPLD is shown below.
The programmable functional block typically looks like the one shown below. There will be an array of AND gates which can be programed. The OR gates are fixed. But each manufacturer has their way of building the functional block. A registered output can be obtained by manipulating the feedback signals obtained from the OR ouputs.
CPLD Programming
The design is first coded in HDL (Verilog or VHDL), once the code is validated (simulated and synthesized). During synthesis the target device(CPLD model) is selected, and a technology-mapped net list is generated. The net list can then be fitted to the actual CPLD architecture using a process called place-and-route, usually performed by the CPLD company's proprietary place-and-route software. Then the user will do some verification processes. If every thing is fine, he will use the CPLD, else he will reconfigure it.
Comments