Skip to main content

Type-3: Give Verilog/VHDL code ...

Most Common Interview Questions: Type-3: Give Verilog/VHDL code ...

The prime intention of the interviewer in asking this question is to see the hands-on experience you have. If you have mentioned that you are familiar with Verilog/VHDL in your resume and attending an ASIC engineer post, then you can expect this question. This question usually comes after asking Type-1 and/or Type-2 questions (explained in previous posts). No interviewer starts with this type of question.

The common strategy followed is: initially you will be asked "Type-1: Design a ..." and then as an extension you will be asked to code it in Verilog or VHDL. Further, the interviewer may specifically ask you, to code for synthesis.

Tips
  • This question is asked to test your ability to code. Don't ever write a psuedo code or a code with syntax error(s).
  • Prepare for this question by coding some basic programs like flip-flops, counters, small FSMs etc. Make sure that you touch most of the commonly used Verilog/VHDL keywords.
  • Once you write some code, try to synthesize it and also try to find out the solution(s) if there are any errors.
  • Code some combinational and sequential codes. Try to code using hierarchies.
This is not a good way of testing one's knowledge, this is usually used to just see the hands-on experience you got. Sometimes this may become crucial if the project (which you are hired for) requires an ASIC design enginner urgently, so if you have enough experience then time can be saved by skipping training.

You might also want to read the following articles

Type-2: Tell us about a design/project you worked on

Type-1: Design a ...

First Things First -- Preparing a Good Resume

Comments

Popular posts from this blog

Digital Design Interview Questions - All in 1

1. How do you convert a XOR gate into a buffer and a inverter (Use only one XOR gate for each)? Answer 2. Implement an 2-input AND gate using a 2x1 mux. Answer 3. What is a multiplexer? Answer A multiplexer is a combinational circuit which selects one of many input signals and directs to the only output. 4. What is a ring counter? Answer A ring counter is a type of counter composed of a circular shift register. The output of the last shift register is fed to the input of the first register. For example, in a 4-register counter, with initial register values of 1100, the repeating pattern is: 1100, 0110, 0011, 1001, 1100, so on. 5. Compare and Contrast Synchronous and Asynchronous reset. Answer Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be that significant. The clock works as a filter for sma

XMR: Cross Module Reference

Cross Module Reference   Cross Module Reference abbreviated as XMR is a very useful concept in Verilog HDL (as well as system Verilog). However it seems to be less known among many users of Verilog. XMR is a mechanism built into Verilog to globally reference (i.e., across the modules) to any nets, tasks, functions etc. Using XMR, one can refer to any object of a module in any other module, irrespective of whether they are present below or above its hierarchy. Hence, a XMR can be a:   Downward reference OR Upward reference   Consider the following hierarchy:     Module A   Net x   Instance P of Module B     Net x   Instance M of Module D   Net x   Instance Q of Module C   Net x   Instance N of Module E    Net x   Instance R of Module B   Net x   Instance M of Module D   Net x     In test bench:   Instance top of Module A   In the above scenario, there is a

Synchronous Reset vs. Asynchronous Reset

Why Reset? A Reset is required to initialize a hardware design for system operation and to force an ASIC into a known state for simulation. A reset simply changes the state of the device/design/ASIC to a user/designer defined state. There are two types of reset, what are they? As you can guess them, they are Synchronous reset and Asynchronous reset. Synchronous Reset A synchronous reset signal will only affect or reset the state of the flip-flop on the active edge of the clock. The reset signal is applied as is any other input to the state machine. Advantages: The advantage to this type of topology is that the reset presented to all functional flip-flops is fully synchronous to the clock and will always meet the reset recovery time. Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be