Skip to main content

Type-3: Give Verilog/VHDL code ...

Most Common Interview Questions: Type-3: Give Verilog/VHDL code ...

The prime intention of the interviewer in asking this question is to see the hands-on experience you have. If you have mentioned that you are familiar with Verilog/VHDL in your resume and attending an ASIC engineer post, then you can expect this question. This question usually comes after asking Type-1 and/or Type-2 questions (explained in previous posts). No interviewer starts with this type of question.

The common strategy followed is: initially you will be asked "Type-1: Design a ..." and then as an extension you will be asked to code it in Verilog or VHDL. Further, the interviewer may specifically ask you, to code for synthesis.

  • This question is asked to test your ability to code. Don't ever write a psuedo code or a code with syntax error(s).
  • Prepare for this question by coding some basic programs like flip-flops, counters, small FSMs etc. Make sure that you touch most of the commonly used Verilog/VHDL keywords.
  • Once you write some code, try to synthesize it and also try to find out the solution(s) if there are any errors.
  • Code some combinational and sequential codes. Try to code using hierarchies.
This is not a good way of testing one's knowledge, this is usually used to just see the hands-on experience you got. Sometimes this may become crucial if the project (which you are hired for) requires an ASIC design enginner urgently, so if you have enough experience then time can be saved by skipping training.

You might also want to read the following articles

Type-2: Tell us about a design/project you worked on

Type-1: Design a ...

First Things First -- Preparing a Good Resume


Popular posts from this blog

Setup and Hold TIme

Every flip-flop has restrictive time regions around the active clock edge in which input should not change. We call them restrictive because any change in the input in this regions the output may be the expected one (*see below). It may be derived from either the old input, the new input, or even in between the two. Here we define, two very important terms in the digital clocking. Setup and Hold time.
The setup time is the interval before the clock where the data must be held stable.The hold time is the interval after the clock where the data must be held stable. Hold time can be negative, which means the data can change slightly before the clock edge and still be properly captured. Most of the current day flip-flops has zero or negative hold time.

In the above figure, the shaded region is the restricted region. The shaded region is divided into two parts by the dashed line. The left hand side part of shaded region is the setup time period and the right hand side part is the hold time…

Digital Design Interview Questions - All in 1

1. How do you convert a XOR gate into a buffer and a inverter (Use only one XOR gate for each)?

2. Implement an 2-input AND gate using a 2x1 mux.

3. What is a multiplexer?

A multiplexer is a combinational circuit which selects one of many input signals and directs to the only output.

4. What is a ring counter?

A ring counter is a type of counter composed of a circular shift register. The output of the last shift register is fed to the input of the first register. For example, in a 4-register counter, with initial register values of 1100, the repeating pattern is: 1100, 0110, 0011, 1001, 1100, so on.

5. Compare and Contrast Synchronous and Asynchronous reset.

Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be that significant. The clock works as a filter for small reset gl…

Gate-Level Modeling

>> Introduction
>> Gate Primitives
>> Delays
>> Examples


In Verilog HDL a module can be defined using various levels of abstraction. There are four levels of abstraction in verilog. They are:
Behavioral or algorithmic level: This is the highest level of abstraction. A module can be implemented in terms of the design algorithm. The designer no need to have any knowledge of hardware implementation.Data flow level: In this level the module is designed by specifying the data flow. Designer must how data flows between various registers of the design.Gate level: The module is implemented in terms of logic gates and interconnections between these gates. Designer should know the gate-level diagram of the design.Switch level: This is the lowest level of abstraction. The design is implemented using switches/transistors. Designer requires the knowledge of switch-level implementation details.
Gate-level modeling is virtually the lowest-level of abstraction, because t…