Skip to main content

SoC : System-On-a-Chip

System-on-a-chip (SoC) refers to integrating all components of an electronic system into a single integrated circuit (chip). A SoC can include the integration of:
  • Ready made sub-circuits (IP)
  • One or more microcontroller, microprocessor or DSP core(s)
  • Memory components
  • Sensors
  • Digital, Analog, or Mixed signal components
  • Timing sources, like oscillators and phase-locked loops
  • Voltage regulators and power management circuits
The blocks of SoC are connected by a special bus, such as the AMBA bus. DMA controllers are used for routing the data directly between external interfaces and memory, by-passing the processor core and thereby increasing the data throughput of the SoC. SoC is widely used in the area of embedded systems. SoCs can be fabricated by several technologies, like, Full custom, Standard cell, FPGA, etc. SoC designs are usually power and cost effective, and more reliable than the corresponding multi-chip systems. A programmable SoC is known as PSoC.

Advantages of SoC are:
  • Small size, reduction in chip count
  • Low power consumption
  • Higher reliability
  • Lower memory requirements
  • Greater design freedom
  • Cost effective
Design Flow

SoC consists of both hardware and software( to control SoC components). The aim of SoC design is to develop hardware and software in parallel. SoC design uses pre-qualified hardware, along with their software (drivers) which control them. The hardware blocks are put together using CAD tools; the software modules are integrated using a software development environment. The SoC design is then programmed onto a FPGA, which helps in testing the behavior of SoC. Once SoC design passes the testing it is then sent to the place and route process. Then it will be fabricated. The chips will be completely tested and verified.


SoC integration said…
Very nice blog... I found very helpful information about SoC integration. Thanks for sharing complete details.

Popular posts from this blog

Setup and Hold TIme

Every flip-flop has restrictive time regions around the active clock edge in which input should not change. We call them restrictive because any change in the input in this regions the output may be the expected one (*see below). It may be derived from either the old input, the new input, or even in between the two. Here we define, two very important terms in the digital clocking. Setup and Hold time.
The setup time is the interval before the clock where the data must be held stable.The hold time is the interval after the clock where the data must be held stable. Hold time can be negative, which means the data can change slightly before the clock edge and still be properly captured. Most of the current day flip-flops has zero or negative hold time.

In the above figure, the shaded region is the restricted region. The shaded region is divided into two parts by the dashed line. The left hand side part of shaded region is the setup time period and the right hand side part is the hold time…

Digital Design Interview Questions - All in 1

1. How do you convert a XOR gate into a buffer and a inverter (Use only one XOR gate for each)?

2. Implement an 2-input AND gate using a 2x1 mux.

3. What is a multiplexer?

A multiplexer is a combinational circuit which selects one of many input signals and directs to the only output.

4. What is a ring counter?

A ring counter is a type of counter composed of a circular shift register. The output of the last shift register is fed to the input of the first register. For example, in a 4-register counter, with initial register values of 1100, the repeating pattern is: 1100, 0110, 0011, 1001, 1100, so on.

5. Compare and Contrast Synchronous and Asynchronous reset.

Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be that significant. The clock works as a filter for small reset gl…

Gate-Level Modeling

>> Introduction
>> Gate Primitives
>> Delays
>> Examples


In Verilog HDL a module can be defined using various levels of abstraction. There are four levels of abstraction in verilog. They are:
Behavioral or algorithmic level: This is the highest level of abstraction. A module can be implemented in terms of the design algorithm. The designer no need to have any knowledge of hardware implementation.Data flow level: In this level the module is designed by specifying the data flow. Designer must how data flows between various registers of the design.Gate level: The module is implemented in terms of logic gates and interconnections between these gates. Designer should know the gate-level diagram of the design.Switch level: This is the lowest level of abstraction. The design is implemented using switches/transistors. Designer requires the knowledge of switch-level implementation details.
Gate-level modeling is virtually the lowest-level of abstraction, because t…