Skip to main content

Scheduling

The Verilog HDL is defined in terms of a discrete event execution model. A design consists of connected processes. Processes are objects that can be evaluated, that may have state, and that can respond to changes on their inputs to produce outputs. Processes include primitives, modules, initial and always procedural blocks, continuous assignments, asynchronous tasks, and procedural assignment statements.

The following definitions helps in better understanding of scheduling and execution of events:
  • Update event: Every change in value of a net or variable in the circuit being simulated, as well as the named event, is considered as an update event.
  • Evaluation event: Processes are sensitive to update events. When an update event is executed, all the processes that are sensitive to that event are evaluated in an arbitrary order. The evaluation of a process is also an event, known as an evaluation event.
  • Simulation time: It is used to refer to the time value maintained by the simulator to model the actual time it would take for the circuit being simulated.
Events can occur at different times. In order to keep track of the events and to make sure they are processed in the correct order, the events are kept on an event queue, ordered by simulation time. Putting an event on the queue is called scheduling an event.

Scheduling events:

The Verilog event queue is logically segmented into five different regions. Each event will be added to one of the five regions in the queue but are only removed from the active region.
  1. Active events: Events that occur at the current simulation time and can be processed in any order.
  2. Inactive events: Events that occur at the current simulation time, but that shall be processed after all the active events are processed.
  3. Nonblocking assign update events: Events that have been evaluated during some previous simulation time, but that shall be assigned at this simulation time after all the active and inactive events are processed.
  4. Monitor events: Events that shall be processed after all the active, inactive, and nonblocking assign update events are processed.
  5. Future events: Events that occur at some future simulation time. Future events are divided into future inactive events, and future nonblocking assignment update events.
The processing of all the active events is called a simulation cycle.

Comments

Popular posts from this blog

Digital Design Interview Questions - All in 1

1. How do you convert a XOR gate into a buffer and a inverter (Use only one XOR gate for each)?
Answer



2. Implement an 2-input AND gate using a 2x1 mux.
Answer



3. What is a multiplexer?
Answer

A multiplexer is a combinational circuit which selects one of many input signals and directs to the only output.

4. What is a ring counter?
Answer

A ring counter is a type of counter composed of a circular shift register. The output of the last shift register is fed to the input of the first register. For example, in a 4-register counter, with initial register values of 1100, the repeating pattern is: 1100, 0110, 0011, 1001, 1100, so on.

5. Compare and Contrast Synchronous and Asynchronous reset.
Answer

Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be that significant. The clock works as a filter for small reset gl…

Setup and Hold TIme

Every flip-flop has restrictive time regions around the active clock edge in which input should not change. We call them restrictive because any change in the input in this regions the output may be the expected one (*see below). It may be derived from either the old input, the new input, or even in between the two. Here we define, two very important terms in the digital clocking. Setup and Hold time.
The setup time is the interval before the clock where the data must be held stable.The hold time is the interval after the clock where the data must be held stable. Hold time can be negative, which means the data can change slightly before the clock edge and still be properly captured. Most of the current day flip-flops has zero or negative hold time.


In the above figure, the shaded region is the restricted region. The shaded region is divided into two parts by the dashed line. The left hand side part of shaded region is the setup time period and the right hand side part is the hold time…

Gate-Level Modeling

>> Introduction
>> Gate Primitives
>> Delays
>> Examples


Introduction

In Verilog HDL a module can be defined using various levels of abstraction. There are four levels of abstraction in verilog. They are:
Behavioral or algorithmic level: This is the highest level of abstraction. A module can be implemented in terms of the design algorithm. The designer no need to have any knowledge of hardware implementation.Data flow level: In this level the module is designed by specifying the data flow. Designer must how data flows between various registers of the design.Gate level: The module is implemented in terms of logic gates and interconnections between these gates. Designer should know the gate-level diagram of the design.Switch level: This is the lowest level of abstraction. The design is implemented using switches/transistors. Designer requires the knowledge of switch-level implementation details.
Gate-level modeling is virtually the lowest-level of abstraction, because t…